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We study the scaling limit of a fully packed loop model in two dimensions, where the loops are endowed
with a bending rigidity. The scaling limit is described by athree-parameterfamily of conformal field theories,
which we characterize via its Coulomb-gas representation. One choice for two of the three parameters repro-
duces the critical line of the exactly solvable six-vertex model, while another corresponds to the Flory model
of polymer melting. Exact central charge and critical exponents are calculated for polymer melting in two
dimensions. Contrary to predictions from mean-field theory we show that polymer melting, as described by the
Flory model, iscontinuous. We test our field theoretical results against numerical transfer matrix calculations.
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I. INTRODUCTION

Over the years, polymers physics has greatly benefited
from studies of lattice models. One persistent theme has been
the use of lattice models to uncover universal properties of
chain molecules. An example is provided by the scaling ex-
ponents which characterize the statistical properties of poly-
mer conformations, in the limit of very long chains[1]. For
polymer chains confined to live in two dimensions, exact
values of exponents were calculated by Nienhuis[2] using
the self-avoiding walk on the honeycomb lattice. The pre-
dicted value of the swelling exponent, which relates the lin-
ear size of the polymer to the number of monomers, was
directly measured in recent fluorescence microscopy studies
of DNA absorbed on a lipid bilayer[3].

Here we turn to the problem of polymer melting, which
deals with a possible phase transition induced by the compe-
tition between chain entropy and bending rigidity. Bending
rigidity determines the persistence length of the polymer.
This is the distance over which the relative orientations of
two chain segments are decorrelated due to thermal fluctua-
tions. The long chain limit mentioned in the previous para-
graph is obtained when the polymer length is much greater
than its persistence length.

It is important to point out that the effect of finite bending
rigidity depends crucially on the steric constraints imposed
on the polymer by its interactions with the solvent. For ex-
ample, in the presence of a good solvent the polymer is in a
“dilute” phase. Typical chain conformations are swollen with
empty space between the monomers filled by solvent mol-
ecules. On the lattice, the dilute phase is characterized by a
vanishing fraction of sites occupied by monomers. In this
phase, the bending rigidity simply increases the persistence
length of the polymer, and it does not lead to a phase transi-
tion. This can be verified analytically in two dimensions,

within the framework of Nienhuis’ self-avoiding walk model
[4,5].

The picture changes considerably when the polymer is in
a “compact” phase, with the monomers occupying all the
available space. Such a situation is relevant, for instance,
when modeling the conformations of globular proteins[6].
Compactness in this case follows from the interaction be-
tween hydrophobic amino acids and the solvent(water),
which leads to the expulsion of the solvent from the bulk of
the protein. The simplest way to model this effect is to en-
force compactness as a global, steric constraint on the poly-
mer configurations[6]. Within this compact phase, one ex-
pects a phase transition from a disordered melt to an ordered
crystal as the stiffness of the polymer is increased.

To study this melting transition, in 1956 Flory introduced
a lattice model[7]. Flory’s model, in its simplest formula-
tion, consists of a single chain, described by a self-avoiding
walk on the square lattice, endowed with a bending rigidity.
To describe the melted phase the chain is taken to be maxi-
mally compact, filling all the sites of the square lattice; see
Fig. 1. The resistance to bending is modeled by an energy
penalty for making 90° turns.

In the Flory model, at infinite temperature the entropy
dominates and the polymer will exhibit a finite density of
bends, as in Fig. 1(a). As the temperature is lowered to zero,
all the bends are expelled from the bulk and their density
goes to zero, as in Fig. 1(b). The nature of the transition from
the high temperature melt to the low temperature crystal has
been debated over the years[8]. Here we show that the melt-
ing transition iscontinuousand calculate exact values of
scaling exponents at the transition.

In his original paper, Flory[7] proposed a mean-field
treatment which predicts a first-order transition. According to
Ref. [7], the density of bends goes to zero at the transition
and the chain entropy vanishes. This prediction of a first-
order transition with a vanishing entropy was challenged by
Nagle [9]. Namely, he showed that the exactly solvable six-
vertex model maps to a related polymer model which differs
from Flory’s by the presence of polymer loops of all sizes.
Applying Flory’s mean-field approximation to this model
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leads once again to the prediction of a first-order melting
transition. However, as Nagle pointed out, this is at odds
with the exact solution of the six-vertex model[10] which
predicts a continuous, infinite order transition. This observa-
tion makes it questionable that the Flory approach is valid in
the original model as well. In fact, a few years later Gujrati
and Goldstein[11] proved that the polymer entropy in Flo-
ry’s model stays finite all the way down to zero temperature
when it finally vanishes. However, the order of the transition
still remained an unresolved question.

Monte Carlo simulations of Baumgartner and Yoon[12],
where they allowed for many chains and a finite density of
empty sites, showed a first-order melting transition. Soon
thereafter Saleur[13], using a transfer matrix approach, pre-
sented numerical evidence of a continuous transition, similar
to the one found in the six-vertex model. The analogy with
the six-vertex model points at the possibility of having a
high-temperature phase with continuously varying expo-
nents. A few years later, Bascle, Garel, and Orland[14] pro-
posed an improved mean-field treatment of the Flory model,
which does not suffer from the problem of a vanishing en-
tropy at the transition. It also predicts a first-order transition.
This is however at odds with more recent Monte Carlo work
by Mansfield[15] which, although strictly speaking dealing
with a system of many chains, is again in favor of a continu-
ous transition.

Here we show that polymer melting is continuous, as
originally argued by Saleur[13], by making use of a particu-
lar model, thesemiflexible loop(SFL) model, and its height
representation. Furthermore, we calculate the central charge
and exact scaling exponents at the transition. These results
are checked against detailed numerical transfer matrix com-
putations.

The SFL loop model can be thought of as a “loop gener-
alization” of the so-called F model[9], in which suitably
defined loops carry additional Boltzmann weights. The F
model is a special case of the six-vertex model[10], in which
all vertices carry equal weights. This connection will serve as
the motivation for introducing a more general model, the
generalized six-vertex model, in which the general(zero-
field) six-vertex model is endowed with extra loop weights.
We shall finally introduce a similarly generalized version of
the eight-vertex model[10]. Its interest from a polymer point
of view is that it allows for a unified description of semiflex-
ible lattice polymers in a variety of phases: compact, dense,
and dilute. Furthermore, it allows us to discuss the effect of
vacancies on the polymer melting transition.

The paper is organized as follows. In the following sec-
tion we introduce the SFL model, which, in the limit of zero
loop weight, gives the Flory model of polymer melting, and
we discuss its phase diagram. In Sec. III we discuss the
height representation of the loop model and how it leads to a
conformal field theory in the scaling limit. We make use of
the field theory in Sec. IV to calculate the central charge and
scaling exponents, which we check against numerical trans-
fer matrix computations in Sec. V. In Sec. VI we propose a
phase diagram for the generalized six-vertex and eight-vertex
models. We end with a discussion of the scaling of semiflex-
ible compact polymers, and we argue that the generalized
eight-vertex model furnishes a rather complete description of
noncompact semiflexible polymers. An appendix is reserved
for a detailed discussion of the construction of the transfer
matrices.

II. SEMIFLEXIBLE LOOP MODEL

Here we define the SFL model, and give a rough sketch of
its phase diagram based on the limits of weak and strong
bending rigidity. The fact that the SFL model reduces to the
F model in the limit of unit loop fugacity[9] plays an im-
portant role in guiding our intuition about the loop model. It
also provides an exactly solvable line in the phase diagram,
against which the field theoretical and numerical results can
be checked.

A. Definition of the model

The semiflexible fully packed loop model on the square
lattice (the SFL model) is defined by filling the square lattice
with loops drawn along the lattice edges. Allowed loop con-
figurations satisfy two constraints:(a) self avoidance—loops
are not allowed to cross, and(b) full packing—every site is
visited by exactly one loop.

On the square lattice with periodic boundary conditions,
edges that are not covered by loops also form loops, as there
are two unoccupied edges associated with every site of the
lattice. We refer these to as “ghost loops.”

Given the configurations of the semiflexible loop model,
the Boltzmann weights are defined in the following way.
Every real loop is given a weightnb, and every ghost loop
has weightng. (In all the figures the real and ghost loops are
shown as black and gray, respectively, whence the subscripts
b and g.) The parametersnb and ng act as fugacities of the
two-loop flavors, and as such they control the average num-

FIG. 1. Compact polymer con-
figurations on an 11315 square
lattice: (a) Typical configuration
in the melt phase, and(b) zero-
temperature crystalline state, in
which the number of bends is
minimum.
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ber of loops of each flavor[16]. They can be varied indepen-
dently as the number of ghost loops is not fixed by the num-
ber of real loops[17]. Furthermore, a weightwX is assigned
to each vertex of the lattice at which the real and ghost loops
cross. ForwX .1 this has the effect of disfavoring vertices at
which the loop makes a 90° bend, or, in other words, the
loops are semiflexible. The partition function of the semi-
flexible loop model is

Z = o
G

nb
Nbng

NgwX
V , s1d

where the sum runs over all allowed loop configurationsG.
Nb and Ng are the number of real and ghost loops, respec-
tively, while V is the number of crossing vertices; these are
the two rightmost vertices in Fig. 3. In the limitnb→0, with
ng=1, we recover the Flory model:Z/nb counts compact
polymer loops each weighed bywX

V.
The semiflexible loop model can be thought of as the

generalization of the fully packed loop model on the square
lattice sFPL2d model introduced in Ref.[17]. The FPL2

model is given by the partition function, Eq.(1), with wX
=1. It has a critical phase forunbu , unguø2, characterized by a
power-law distribution of loop sizes. For other values of the
loop weights the model is noncritical with a distribution of
loop sizes cut off at a finite value(fixed by the correlation
length). Below we will show that the vertex weightwX, for
each point in the critical phase of the FPL2 model, produces
a line of fixed points which terminates in a Kosterlitz-
Thouless transition.

B. Qualitative phase diagram

Rough, qualitative features of the phase diagram of the
semiflexible loop model can be deduced from the limits of
zero and infinite bending rigidity. The motivation for devel-
oping a precise theory of the phase diagram, as mentioned in
the Introduction, stems from the interest in thenb→0, ng
=1 case, which is the Flory model of polymer melting. We
are also motivated by the relation of the SFL model to the
integrable six-vertex model, and its generalizations.

1. Flory model

In the Flory limit of the SFL model, thewX =1 point is the
compact polymer problem, which we have studied previ-
ously [17]. Here one is concerned with enumerating all self-
avoiding walks that visit every site of the lattice. We have
shown that compact polymers on the square lattice are a
critical geometry characterized by non-mean-field scaling ex-
ponents which can be calculated exactly from a field theory.

As wX is increased away from one, we are dealing with a
compact polymer with a bending rigidity. In the limitwX
→` we arrive at a frozen phase in which the density of
vertices at which the polymer bends goes to zero. This is the
polymer crystal. At an intermediate weightwX
=wX

c s1,wX
c ,`d there will be a melting transition. One of

the important unresolved problems is the nature of this tran-
sition. Here we construct an effective field theory of the
Flory model and show that the melting transition iscontinu-
ous.

Another interesting issue is the region of 0øwX ,1. As
wX →0, straight-going vertices are completely suppressed,

FIG. 2. Typical configurations in the SFL model withnb=ng=2 and bending rigidity parameterwX =1/4 (a), wX =1 (b), andwX =4 (c).
We shall show that the left and middle panels correspond to critical melt states, while the right panel is a noncritical crystalline state. In the
latter, domains of nonzero staggered polarization(see Sec. II B 2) are clearly visible.
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and with appropriate boundary conditions the only allowed
configurations are those of a checkerboard pattern of small
loops, each loop having its minimal length of 4. If the Flory
limit snb→0d is taken before thewX →0 limit, there has to
be a number of straight-going vertices at the boundary, the
dominant configurations being those of a single wiggly line.
In any case, thewX →0 limit is again a crystalline phase of
zero entropy. We shall however argue below that the corre-
sponding crystallization transition is located atwX =0 and is
thus rather uninteresting.

A qualitative idea of the physics underlying the phase
diagram of the SFL model can be obtained by looking at
some typical configurations for various values ofwX; see
Fig. 2. The images were obtained by performing Monte
Carlo simulations on a square lattice of size 1003100 with
toroidal boundary conditions. For technical reasons[18] we
takenb=ng=2 and no loops of noncontractible topology are
allowed. (Further details on the algorithm used for these
simulations can be found in Ref.[18].)

2. Six-vertex model

Before turning our sights to the semiflexible loop model it
is instructive to review exact results for the(zero-field) six-
vertex (6V) model. The 6V model corresponds to thenb
=ng=1 line in the phase diagram of the SFL model. The
mapping between the two is simple: at even(odd) vertices
the edges covered by the real loops are identified with arrows
pointing out(in), while the edges covered by the ghost loops
correspond to arrows pointing in(out); see Fig. 3. The ap-
propriate six-vertex weights area=b=1 andc=wX [19].

In the 6V model there is an order-disorder transition as a
function of the vertex weightwX. In the ordered state, which
is obtained forwX →`, all the vertices are of thec variety
(cf. Fig. 3). The order parameter is the staggered polariza-
tion, which in the loop language can be expressed as the
difference between the number of horizontal and the number
of vertical loop-covered edges per site[13]. The exact solu-
tion of the six-vertex model predicts a continuous(infinite-
order) transition occurring atwX =2 [10]. The disordered
phase for 0,wX ,2 is critical with an infinite correlation
length and power-law correlations. Below we will show that
there is an analogous transition in the semiflexible loop
model, aswX is varied, for all values ofunbu , unguø2, includ-
ing the Flory casesnb→0,ng=1d. In the Flory model this
was observed previously by Saleur in numerical transfer ma-
trix computations[13]. For the critical phase of the model we
shall construct an effective field theory using the interface
representation of the loop model. This leads to exact(but

nonrigorous) results for the central charge and scaling di-
mensions, which we confirm via numerical transfer matrix
calculations.

III. FIELD THEORY CONSTRUCTION

To construct a field theory for the critical phase of the
SFL model we make use of the height representation of the
FPL2 model. This was already described in detail in our pre-
vious work[17], and here it is briefly reviewed for complete-
ness. The main effect of the vertex weightwX on the field
theory is to renormalize one of its coupling(elastic) con-
stants. This does not change the central charge, but leads to
continuously varying scaling dimensions for a specific subset
of operators, which we identify. These results are confirmed
by our numerical transfer matrix computations.

A. Height map

The height mapping is defined on the space of oriented
loop configurationshG8j. We associate 2Ng+Nb oriented loop
configurationG8 with each loop configurationG of the SFL
model by independently orienting every real and every ghost
loop clockwise or counterclockwise.

The Boltzmann weight of an oriented loop is expsifd,
where the phasef= ±peb for clockwise(counterclockwise)
oriented real loops, andf= ±peg for the two orientations of
the ghost loops. To recovernb and ng for the loop weights,
after summing over the two possible orientations we must set

nb = 2 cosspebd,
s2d

ng = 2 cosspegd.

This particular partition of the loop weights between the two
orientations has the advantage of allowing the loop weights
to be distributed among all the vertices that the loop visits,
thus rendering the weights local. This is achieved by assign-
ing the phasepeb/4speg/4d to every vertex at which the
oriented real(ghost) loop makes a right turn, and the oppo-
site phase for left turns. The fact that for every closed loop
on the square lattice the difference between the number of
left and right turns is ±4, is what makes these vertex weights
work. The total vertex weight is then given by the product of
phase factors when the loops bend, while a weightwX is
assigned to vertices at which the loops do not bend.

Turning back to the height map, we define microscopic
heightshsxd on the latticehxj dual to the square lattice on
which the loops are defined. Once the height at the origin is
fixed, the heights on all the other vertices of the dual lattice
are uniquely specified by the oriented loop configuration.
Namely, the height difference between nearest-neighbor ver-
tices of the dual lattice isA, B, C, or D, depending on the
state of the edge that separates them. The four height-
difference vectors, also referred to as “colors,” are associated
with the four possible states of any given edge, which can be
either covered by a real or a ghost loop, with one of two
possible loop orientations. Real loops are formed by alternat-
ing cycles ofA and B colored edges, while theC and D
colored edges are ones visited by the ghost loops. Note that

FIG. 3. Correspondence between the vertices of the six-vertex
model and the FPL2 model (here shown for an even vertex; at odd
vertices the arrows are reversed).
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the difference between anABAB¯ and aBABA¯ cycle
encodes the orientation of the corresponding(real) loop.

The fully packing constraint and the requirement that the
height be unique(i.e., the sum of height differences along
any closed lattice path must be zero) imposes a single alge-
braic constraint on the four colors:A +B+C+D=0. It fol-
lows that only three of the four vectors are linearly indepen-
dent. A convenient choice that respects the symmetries
between the four colors is to let the corresponding vectors
point from the center to the vertices of a regular tetrahedron:

A = s− 1, + 1, + 1d, B = s+ 1, + 1,− 1d,
s3d

C = s− 1,− 1,− 1d, D = s+ 1,− 1, + 1d.

The effective field theory for the SFL model describes the
fluctuations of the coarse-grained heights which retains only
the long-wavelength(much larger than the lattice spacing)
Fourier modes of the microscopic heights.

B. Effective field theory: wX =1

For wX =1 we have the familiar case of the fully packed
loop model on the square lattice. Its effective field theory
was discusses in a previous publication[17] and here it is
reviewed for completeness.

The partition function of the loop model in the height
representation can be written as a path integral over the
coarse grained heights with the(dimensionless) action:

S= SE + SB + SL . s4d

This action only takes into account the long-wavelength fluc-
tuations of the microscopic height. The three terms in the
action are of different origin.

The elastic term

SE =
1

2
E d2xhK11fs h1d2 + s h3d2g + 2K13s h1 ·  h3d

+ K22s h2d2j s5d

accounts for the height fluctuations due to the entropy of
fully packing the square lattice with oriented loops. Equiva-
lently, this is the entropy of edge coloring the square lattice
with four different colors. The elastic term favors oriented
loop configurations that minimize the variance of the micro-
scopic height; these are the macroscopically flat states. In
terms of the color degrees of freedom the flat states have the
property that the four edges of each elementary plaquette are
colored by two colors only.

The particular form of the matrix of elastic constantsK is
fixed by the lattice symmetries and symmetries associated
with permuting the colorsA, B, C, andD. The elastic con-
stantsKij are functions of the loop fugacity. For thewX =1
case they were calculated in Ref.[17] using the loop ansatz
[22], which allows one to identify the marginal screening
charges[23]. For the FPL2 model there are four screening
charges:

es1d = s− p,0, +pd,

es2d = s− p,0,−pd,
s6d

es3d = s− p, + p,0d,

es4d = s− p,− p,0d.

These electric charges are associated with the most relevant
vertex operators appearing in the Fourier expansion of the
operator conjugate to the loop weight[see Eq.(12) below].

Demanding that all four charges have scaling dimension
equal to 2 gives[using Eq.(16)]

K11 =
p

8
s2 − eg − ebd,

s7d

K13 =
p

8
seb − egd,

K22 =
p

2

s1 − ebds1 − egd
2 − eb − eg

for the elastic constants of the FPL2 model;eb andeg satisfy
Eq. (2) and take their values on the intervalf0,1/2g. Below
we will argue that the effect ofwX Þ1 is to change the value
of the elastic constantK22 while leaving the other two un-
changed.

The boundary term in the action,

SB =
i

4p
E d2xfe0 ·hsxdgrsxd, s8d

enforces the correct weight of topologically nontrivial loops.
If the oriented loop model is defined with periodic boundary
conditions along one direction(i.e., on a cylinder) these
would be the loops that completely wind around the cylinder
[24]. On a cylinder the scalar curvaturer is nonzero only at
the two boundaries at infinity.SB has the effect of placing
background electric charges ±e0 at the two boundaries,
where the identification

e0 = −
p

2
seg + eb,0,eg − ebd s9d

comes about by demanding that the oriented winding loops
be assigned correct phase factors, exps±ipebd or exps±ipegd
[17].

The third term, called the Liouville term,

SL =E d2xwfhsxdg, s10d

owes its existence to the complex weights associated with
oriented loops in the bulk. The local redistribution of the
loop weights made in Sec. III A leads to complex vertex
weights, which in turn depend only on the colors of the four
edges around the vertex. If we write the vertex weight as
exps−wd, then
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wsB,C,A,Dd = 0,

wsB,D,A,Cd = 0,

wsA,B,C,Dd = 7 i
p

4
seg + ebd,

wsB,A,C,Dd = 7 i
p

4
seg − ebd, s11d

wsA,B,D,Cd = 7 i
p

4
seb − egd,

wsB,A,D,Cd = 7 i
p

4
s− eb − egd;

the top(bottom) sign is for even(odd) vertices, and the col-
ors are listed in order, starting from the leftmost edge and
proceeding clockwise around the vertex. The weight operator
w is invariant under cyclic permutations of the colors and it
is a periodic function of the heights around a vertex. In the
scaling limit the vertex weights give rise to the operator
wfhsxdg in Eq. (10) which can be written as a Fourier series

wfhsxdg = o
ePRw

*

w̃e exp fie ·hsxdg. s12d

The electric chargese appearing in the Fourier expansion are
dictated by the lattice of periodicitiesRw of the operator
wfhg; Rw

* is the reciprocal lattice.Rw is determined by in-
spection of the values the loop weight operator takes on the
flat states: vectors inRw connect flat states on which the loop
weight operator takes identical values. The most relevant
charges inRw

* are the four given in Eq.(6). We identify them
with the screening charges[23] of the Coulomb gas. This is
the content of the loop ansatz introduced in Ref.[22].

C. Effective field theory: wXÅ1

For the SFL model, whenwX Þ1, the Liouville term in
Eq. (4) is modified, while the elastic and the boundary terms
are unchanged. The number of marginal screening charges
appearing in Eq.(12) is reduced from four to two, and the
loop ansatz fixes the values ofK11 andK13 only. They do not
depend on the value ofwX and are given by thewX =1 for-
mulas, Eq.(7). K22, on the other hand, is a nonuniversal
function of wX. Below we present arguments for this sce-
nario, which is supported by exact results available in the 6V
case(i.e., for nb=ng=1), and by our numerical transfer ma-
trix calculations described in Sec. V below.

The new vertex weightwX changes the value ofw in Eq.
(11) from 0 to −lnwX for the vertex statessB ,C ,A ,Dd,
sB ,D ,A ,Cd, and six other related to these two by cyclic
permutations of the colors. The weights of the other 16 ver-
tex states are unchanged. We consider the consequences of
this change on the effective field theory.

In the height representation of the SFL model, the change
in vertex weight corresponds to adding

SX =E d2x Xfhsxdg s13d

to the action. TheX operator takes the value lnwX on the flat
states made up ofsB ,C ,A ,Dd or sB ,D ,A ,Cd type vertices,
and vanishes on all the others. By inspection of the graph of
flat states we find that the lattice of periodicities for the op-
eratorX, RX, is the span ofs1,0,−1d, s1,0,1d, ands0,1,0d;
these are the height difference vectors between the flat states
in the support ofX. This observation implies thatXfhg can be
expanded in a Fourier series over electric charges that live in
the dual latticeRx

* which is the span ofsp ,0 ,pd, sp ,0 ,
−pd, ands0,2p ,0d.

If we consider the effect ofSX as a perturbation on the
action of the FPL2 model, the electric chargess0, ±2p ,0d
play a special role. Namely, the operator product expansion
of exp fis0,2p ,0d ·hg and expf−is0,2p ,0d ·hg contains the
sh2d2 operator, and therefore leads to the renormalization of
K22 [25]. This follows from the fact that the background
charge, Eq.(9), has a vanishing second component. On the
other hand, for chargese with nonzero first or third compo-
nent, the effect of the background charge is that the operator
product expansion of expsie·hd and exps−ie·hd does not
containhi ·hj operators and therefore does not lead to the
renormalization of the elastic constantsKij .

The Coulomb gas representation of the height model pro-
vides a clear physical picture of the effect ofSX on the criti-
cal action of the FPL2 model. ForwX =1 the dimension of the
s0, ±2p ,0d charges follows from Eq.(16),

xX =
s2pd2

4pK22
= 2S 1

1 − eb
+

1

1 − eg
D . s14d

It is greater than 2 in the whole critical region of the FPL2

model. These charges are therefore irrelevant in the renor-
malization group sense. In the Coulomb gas picture the
s0, ±2p ,0d charges appear as bound pairs of neutral dipoles.
IncreasingwX will have the effect of increasing the bare
fugacity of these dipoles, which will in turn increase the
value of the couplingK22 appearing in the effective field
theory. Formally, this can be seen in perturbation theory
making use of the operator product expansion[25]. Physi-
cally, the renormalization ofK22 can be understood as the
screening effect of dipoles. The dipoles lower the Coulomb
energy between two electric test charges having a nonzero
second component, corresponding to an increase in the value
of K22 which plays the role of a dielectric constant.

At a critical valuewX
c there will be a Kosterlitz-Thouless-

type transition of the SFL model into a flat state with a van-
ishing density of vertices at which the polymer bends. At the
transition thes0, ±2p ,0d charges are marginal, i.e., their
scaling dimension is equal to 2. Using Eq.(14) this observa-
tion gives rise to the prediction for the critical value ofK22:

K22swX
c d =

p

2
. s15d

For values ofwX smaller thanwX
c , K22 will be a nonuniversal

function of wX. In the nb=ng=1 case, the formulaK22
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=arcsinswX /2d follows from the exact solution of the 6V
model [10]. The critical value of the vertex weight is
wX

c s6Vd=2 andK22s2d=p /2 is in agreement with Eq.(15).
For other values ofnb andng our numerical transfer matrix
calculations are in good agreement with Eq.(15).

The introduction of the vertex weightwX also has an ef-
fect on the screening charges, Eq.(6), which appear in the
Liouville part of the action. First consider thenb=ng case of
the SFL model. Due to the presence of thewX term cyclic
permutations of the four colors around a vertex are no longer
a symmetry of the vertex weight. Therefore, unlike thewX
=1 case[17], there are now two independent elastic con-
stantsK22 andK11 appearing inSE. K13=0 follows from the
remainingZ2 symmetry of the vertex weights which are in-
variant undertwo cyclic permutations, such assA ,B ,C ,Dd
→ sC ,D ,A ,Bd. The deduced structure of the elasticity ma-
trix implies that the four electric charges in Eq.(6) are no
longer degenerate in dimension for arbitrarywX. Since the
dimensions ofes1d andes2d are independent ofK22, they are
identified as the two screening charges tied to the nonrenor-
malizability of the loop weights[17]. As in the FPL2 model
we then assume that these two charges remain marginal
when nbÞng. Using the dimension formula, Eq.(16), this
then fixes the values of the two elastic constants,K11 and
K13, to the values quoted in Eq.(7).

Finally, it is interesting to look at some extreme limits of
K22 in view of the effective field theory. Consider first the
limit K22→` in which height fluctuations in the second
height component are completely suppressed.(As we are
outside the critical phase, we are here referring to the bare
value of the coupling.) Clearly, height fluctuations must al-
ways be present in the microscopic four-coloring model, but
it is nevertheless instructive to look for the states that mini-
mize the fluctuations ofh2. From the choice of the color
vectors, Eq.(3), it is not difficult to see that on the four sites
of hxj surrounding a given vertex,h2 fluctuates by two units
for the first four vertices of Fig. 3 and by one unit for the last
two vertices. All vertices must therefore be of thec type,
corresponding to the limitwX →`. Thus, K22→` as
wX →`.

Conversely, asK22→0, the fluctuations inh2 become un-
bounded and the effective field theory loses its consistency
(since it was based on the assumption that the interfacial
entropy is due to bounded fluctuations around the macro-
scopically flat states). However, the argument given above
indicates that a small value ofK22 should correspond to a
small number of straight-going vertices in the loop model.
Thus, we would conjecture thatK22→0 aswX →0. This ex-
pectation is confirmed by the exact result for the 6V case
[10] and also by extrapolation of our numerical results for
K22swXd in the Flory case.

Apart from these limiting values, we would of course ex-
pect K22 to be a monotonically increasing function ofwX
throughout the critical phase.

In the following section we compute the central charge
and the scaling dimensions of various operators in the semi-
flexible loop model from its effective field theory. We iden-
tify quantities that depend on the nonuniversal elastic con-
stantK22; these are then predicted to vary continuously with
wX.

IV. OPERATORS AND SCALING DIMENSIONS

The effective field theory of the semiflexible loop model
describes a Coulomb gas of electric and magnetic charges in
the presence of background and screening charges. The mag-
netic chargesm are vectors inR which is the lattice of
periodicities of the graph of flat states, while the electric
chargese take their values in the reciprocal latticeR* [17].
With the normalization adopted for the vectorsA throughD,
Eq. (3), R is a face-centered cubic lattice whose conven-
tional cubic cell has sides of length 4, whileR* is a body-
centered cubic lattice whose conventional cubic cell has
sides of lengthp.

The scaling dimension of an operator which has total
electromagnetic chargese,md is the sum of its electric and
magnetic dimensions, and it is a function of the elastic con-
stants and the background charge[23]:

xse,md =
1

4p
fseK−1d · se− 2e0d + smK d ·mg. s16d

K is the 333 matrix of elastic constants andK −1 is its in-
verse.

From Eq.(16) and the form ofK [Eq. (5)] and e0 [Eq.
(9)], it immediately follows that operators whose electric and
magnetic charges both have a vanishing second component
will have aK22-independent scaling dimension. The scaling
dimension in this case is independent ofwX and equal to its
known value atwX =1 [17]. Operators withe andm charges
whose second components are not both zero will, on the
other hand, have a scaling dimension that varies continu-
ously with wX. These predictions are confirmed by our nu-
merical results.

A. Central charge

The central charge of the SFL model follows from its
critical action. The three height components(bosonic free
fields) each contribute one unit to the central charge while
the contribution from the background charge is 12xse0,0d.
Using Eq.(16) for xse0,0d, Eq.(9) for the background charge
e0, and the calculated values of the elastic constantsK11 and
K13, Eq. (7), we find

c = 3 − 6S eb
2

1 − eb
+

eg
2

1 − eg
D , s17d

independentof the unknown value ofK22.
For the 6V model, which corresponds to theeb=eg=1/3

line in the SFL model, the above formula givesc=1 for the
central charge along the critical line. This result also follows
directly from the exact solution of the 6V model.

For the Flory model of polymer melting, which is theeb
=1/2, eg=1/3 case, the predicted central charge isc=−1.
This value is confirmed by our numerical transfer matrix
calculations(see Sec. V).

B. Thermal operator

The SFL model can be thought of as the zero-temperature
limit of a more general model where we allow for thermal
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excitations that violate the fully packing constraint. Viola-
tions of the constraint lead to vertices with the four adjacent
edges coloredsC ,D ,C ,Dd. In the height representation such
a vertex is identified with a topological defect(screw dislo-
cation) whose charge, i.e., the sum of height differences
around the vertex, is

mT = 2sC + Dd = s0,− 4,0d. s18d

Other vertices which have noA or B colored edges are pos-
sible, but they have a larger magnetic charge and are hence
less relevant.

In the Coulomb gas picture a topological defect corre-
sponds to a magnetic charge. Therefore, the thermal dimen-
sion can be calculated using Eq.(16), and we find

xT = xs0,mTd =
4

p
K22. s19d

We make use of this equation below as it allows us to deter-
mine the unknown elastic constantK22 from a measurement
of the thermal scaling dimension. Once this elastic constant
is known, scaling dimensions of all electromagnetic opera-
tors can be calculated from Eq.(16).

C. String operators

A particularly important set of operators in any loop
model are the string operators. Their two-point function is
defined as the probability of having the small neighborhoods
around two fixed points on the lattice, which are separated by
a large distance, connected bysb real loop segments andsg
ghost loop segments. For simplicity, we shall requiresb and
sg to be either both even or both odd;sb+sg odd requiresL to
be odd which produces a twist in the height, as discussed in
Ref. [17]. In the height representation these string configu-
rations are mapped to two topological defects, one serving as
the source and the other as the sink of oriented loop seg-
ments. When the oriented loop segments wind around the
defect points they are assigned spurious phase factors by the
vertex weights; these phase factors can however be compen-
sated by introducing appropriate electric charges at the posi-
tions of the defects[26].

In the casesb=2kb andsg=2kg, i.e., when the number of
real and ghost strings are both even, the electric and mag-
netic charge of the corresponding string operator are[17]

e2kb,2kg
= −

p

2
seb,0,−ebds1 − dkb,0d −

p

2
seg,0,egds1 − dkg,0d,

s20d
m2kb,2kg

= − 2skb + kg,0,kg − kbd.

Since the charges have vanishing second component their
dimension is independent ofK22 and constant along the
whole critical linewX øwX

c . The value of the string dimen-
sion follows from Eq.(16),

x2kb,2kg
=

1

2
Fs1 − ebdkb

2 + s1 − egdkg
2 −

eb
2

1 − eb
s1 − dkb,0d

−
eg

2

1 − eg
s1 − dkg,0dG , s21d

and is identical to that of the FPL2 model[17]. Our numeri-
cal simulations confirm that even string dimensions are con-
stant along the critical line.

In the odd string case, whensb=2kb−1 andsg=2kg−1,
the electric and magnetic charge are[17]

e2kb−1,2kg−1 = −
p

2
seg + eb,0,eg − ebd,

s22d
m2kb−1,2kg−1 = − 2skb + kg − 1,1,kg − kbd.

Notably, the magnetic charge has a nonvanishing second
component. Using Eq.(16) we calculate

x2kb−1,2kg−1 =
K22

p
+

1

8
fs1 − ebds2kb − 1d2 + s1 − egds2kg − 1d2g

−
1

2
F eb

2

1 − eb
+

eg
2

1 − eg
G s23d

for the odd string dimension. It depends on the value ofK22
and will therefore vary continuously withwX. At the melting
transition the exponents are exactly known from Eq.(15).
This is confirmed by our numerical transfer matrix results,
which we describe next.

V. TRANSFER MATRIX RESULTS

To check the correctness of our field theoretical predic-
tions, we have numerically diagonalized the transfer matrix
of the semiflexible loop model(and of its various generali-
zations, to be discussed below) defined on semi-infinite cyl-
inders of even widthsL ranging from 4 to 14.

The existence of a transfer matrix may not bea priori
obvious, since the Boltzmann weights depend on the number
of loops, which is a nonlocal quantity. We have however
already shown in an earlier publication[17] how this is re-
solved by working in a basis of states that contains nonlocal
information about how loop segments are interconnected at a
given stage of the computations. In that paper, it was also
shown that the full transfer matrix contains various sectors,
the leading eigenvalues of which provide finite-size estima-
tions of the free energy and of the various critical exponents,
using the standard conformal field theory(CFT) relations
[27,28]

f0sLd = f0s`d −
pc

6L2 + ¯ , s24d

fksLd − f0sLd =
2pxk

L2 + ¯ . s25d

Here, the labelk refers either to a higher eigenvalue in the
sector to whichf0 belongs, or to the leading eigenvalue in
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another sector characterized by some topological defect of
chargek.

To access critical exponents, we shall mainly be con-
cerned with topological defects that consist in enforcing that
a certain number of strings of either flavor propagate along
the length direction of the cylinder. These give rise to a two-
parameter family of critical exponentsxsb,sg

corresponding to
sb real strings andsg ghost strings. The corresponding topo-
logical charges, Eqs.(20) and (22), take the form of three-
dimensional electromagnetic vector charges. In the transfer
matrix calculations, each of these topological sectors is asso-
ciated with a different state space. The difficulty of precisely
characterizing these spaces limited our previous approach
[17] to at most two strings. In the Appendix we present an
algorithm that explicitly constructs the required state spaces
for any ssb,sgd, based on an iterative procedure and hashing
techniques.

By inspection of the eigenstates produced by our previous
algorithm[17], it turns out that many of the basis states carry
zero weight. One would then expect that identical results can
be obtained more efficiently by working in a basis in which
such states have been eliminated from the outset. We defer
the technical details of how this can be done to the Appen-
dix. It is also shown how the block-diagonalization scheme
can be carried even further, by exploiting various conserva-
tion laws that are most easily understood from the analogy
between the SFL model and the six-vertex model. One im-
portant consequence is that the constrained free energyfTsLd
that is linked to the thermal scaling dimension can now be
obtained as a leading eigenvalue, rather than as the second
eigenvalue in the stringless sector. This considerably im-
proves the efficiency of the computations.

Finally, the matrix elements need some modification in
order to take into account the bending rigidity parameterwX.
This is readily done, without any modification of the basis
states, sincewX is a purely local quantity.

Before turning to our numerical results, we should men-
tion that we have submitted our transfer matrices to several
tests, in order to verify their correctness:

(1) For wX =1, all numerically determined string dimen-
sionsxsb,sg

with sb+sg=2 or 4 agree to at least three signifi-
cant digits with their exact values in the casessnb,ngd
=s1,1d [10] and snb,ngd=s0,1d [17].

(2) All eigenvalues found for the FPL2 model agree with
those obtained from our previous algorithm[17].

(3) For the six-vertex model[10], we have compared the
extrapolated bulk free energy with Baxter’s exact expression.

(4) Again for the six-vertex model, we find excellent
agreement with the exact formulasx1,1=K22/p and xT
=4K22/p, whereK22=arcsinswX /2d is the elastic constant.

(5) We have also found agreement with the first few
terms in diagrammatic expansions around various limits of
infinite fugacities.

A. Central charge

A crucial prediction of our field theory is that, for given
values of the loop fugacitiessnb,ngd, the central charge of the
SFL model should be independent ofwX, as long as the latter

is constrained to the critical regime, 0,wX øwX
c .

In Fig. 4 we show the effective central charge as a func-
tion of wX, in the casessnb,ngd=s1,1d ands0,1d. The result
c=1 for 0,wX ø2 is well established for the 6V model, but
the plot for this case is still useful as it gives us some guid-
ance as to what finite-size effects to expect. In particular,
note that these become more pronounced whenwX is small,
and that the termination of critical behavior atwX =2 is
clearly signaled by the finite-size data leveling off. Another
effect is that while forwX ,2 the distance between succes-
sive estimates decreases with system size, forwX .2 we
observe this distance to increase.

Although finite-size effects play a more important role in
the snb,ngd=s0,1d case, the general picture is quite similar.
The figure leaves little doubt thatc=−1 for 0,wX øwX

c . We
also obtain a first rough estimatewX

c =1.95±0.15, not far
away from the 6V-model value.

Here, and elsewhere, we mainly show fits in which the
convergence of Eqs.(24) and (25) has been accelerated
through the inclusion of a nonuniversal 1/L4 correction, as
predicted by conformal invariance.

B. String dimensions

We next turn to the computation of the magnetic-type
scaling dimensionsxsb,sg

describing the scaling of the opera-
tor that insertssb real strings andsg ghost strings. To study
these, the widthL of the strip must have the same parity as
sb+sg. For simplicity we shall limit ourselves to the case of
evenL. There are then two classes of exponents: Those in
which sb andsg are both even, and those in which they are

FIG. 4. Central chargec as a function of the bending rigiditywX

for the 6V model(left) and the semiflexible loop model(right). We
show three-point fits for different system sizes, as indicated.
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both odd. The field theory predicts that the former should
stay constant on the critical line, parametrized bywX, while
the latter are expected to vary continuously as functions of
wX; see Sec. IV C.

On Fig. 5 we show two examples of exponents withsb,sg
even, within the SFL model[snb,ngd=s0,1d] with varying
wX. They correspond, respectively, to the insertion of two
ghost stringssx0,2d and of four real stringssx4,0d. From the
figure it should be evident thatx0,2=

1
4 and x4,0=

3
4 are con-

stant throughout the critical phase. In the latter case the
finite-size variations are quite pronounced, as might have
been anticipated given the higher number of strings. Careful
observation of the distance between subsequent finite-size
points however strongly suggests that the variation will
eventually die away.

Examples of exponents withsb,sg odd are given in Fig. 6.
In both cases,x1,1 andx3,1, the convergence to monotonically
increasing functions ofwX is clearly brought out. Also note
the agreement with the exact results forwX =1, which read
x1,1=− 5

112.−0.0446 andx3,1=
51
112.0.455[17], respectively.

C. Thermal scaling dimension

As described in the Appendix, the thermal scaling dimen-
sion is linked to the gap between transfer matrix sectors in
which there is an even(respectively an odd) number of flavor
crossings in the basis states. Because of the relation

K22 =
p

4
xT, s26d

measuring this gap gives a direct means of accessing the
elastic constant associated with the second height component
in the field theory.

According to the field theory,K22 is a nonuniversal func-
tion of wX, and once it is known the values of all the other
critical exponents follow. This suggests the following nu-
merical check of the field theoretic scenario. For several val-
ues ofwX, we measurexT from the transfer matrix, and use it
to determineK22. We then compute the predictions for the
various other scaling dimensions(the xsb,sg

) from the field
theory, Eq.(16), by use of the numerically determined value
of K22, and compare them with values measured directly
from the transfer matrices.

The result of this verification is shown in Table I. The
values forxT are based on transfer matrices for strips up to
sizeL=14, here extrapolated to the limitL→`. The agree-
ment between the CFT predictions and numerics is in general
excellent. Note, however, that the precision deteriorates
wheneverwX approaches zero orwX

c , effects which are also
clearly visible in Figs. 4–6.

The origin of these numerical shortcomings can be under-
stood from the field theory. First, forwX →0 we haveK22
→0 and the fluctuations in the second height component
become unbounded. Microscopically, the dominant configu-
rations are those of long strands of wiggling lines(“helices”)
whose persistence length increases with decreasingwX.
Strong corrections to scaling will set in when this length
becomes comparable to the system sizeL. Second, forwX
→wX

c we are approaching a Kosterlitz-Thouless-type phase
transition, and strong logarithmic corrections to scaling are
expected due to the marginality of the operatorT.

Based on the data in Table I, we can refine our estimate
for the location of the melting transition:

wX
c = 1.92 ± 0.02. s27d

In Fig. 7 we compare our numerical results for the curve
xTswXd in the SFL case with the exactly known result of the

FIG. 5. Scaling dimensionsxsb,sg
with evensb and sg. The left

and right panels show, respectively,x0,2 andx4,0. System sizes used
in the two-point fits are also indicated.

FIG. 6. Scaling dimensionsxsb,sg
with odd sb andsg. We show

x1,1 (left) andx3,1 (right) for the SFL model.
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6V model,xT=s4/pdarcsinswX /2d [10]. Although the func-
tional forms are quite reminiscent, we have unfortunately not
been able to conjecture a convincing exact expression in the
SFL case.

VI. PHASE DIAGRAM

A. Generalized six-vertex model

Given the one-to-one correspondence between the six ver-
tex configurations in the FPL2 model and the six arrow con-
figurations in the six-vertex model(see Fig. 3), it is natural to
define a generalized six-vertex model in which the standard
arrow weights are supplemented by the nonlocal loop
weightsnb,ng of the FPL2 model.

Until now we have only considered the isotropic case of
a=b. (See Fig. 3. Let us briefly recall the effect of taking
aÞb in the six-vertex model[10]. Define the parametersw
andm by

D =
a2 + b2 − wX

2

2ab
= − cosm, 0 , m , p, s28d

a

b
=

expsimd − expsiwd
expsim + iwd − 1

, − m , w , m. s29d

Then, takingaÞb corresponds to twisting the usual square
lattice into a rhombus, defined by the anisotropy angle[29]

u =
p

2
S1 +

w

m
D . s30d

All this means is that the central charge and the critical ex-
ponents, when measured in the usual way from a transfer
matrix, get multiplied by a geometrical factor of sinsud.

In Fig. 8 we plot the effective central charge of the SFL
model with b=wX =1 and varyinga against the variablet
=u /p, defined in terms of the above 6V expressions. By the
word “effective” we mean that we do not correct for the
lattice distortion, the effect of which can then be read off
from the graph. If the effect of the anisotropy were the same
as in the 6V model, the plot should just look like the function
−sinsptd, since the SFL model has(real) central chargec
=−1. Clearly, this is not the case, and so the nonlocality of
the loop weights has a nontrivial effect on the anisotropy
factor. We leave this as an interesting open question.

TABLE I. Thermal exponentxT measured for varying values ofwX. The corresponding values of the
scaling dimensionsx1,1, x3,1, andx1,3 as predicted by our conformal field theory(column marked CFT) are
compared with their numerically measured counterparts(column marked Num.).

wX xT x1,1 x3,1 x1,3

CFT Num. CFT Num. CFT Num.

0.4 0.141s7d
0.5 0.207s5d
0.6 0.275s4d −0.117 −0.115 0.383 0.385 0.549 0.548

0.7 0.346s3d −0.100 −0.100 0.400 0.402 0.567 0.565

0.8 0.413s2d −0.087 −0.085 0.413 0.418 0.580 0.582

0.9 0.4913s7d −0.065 −0.066 0.435 0.436 0.601 0.601

1 4
7 − 5

112
51

112
209
336

1.1 0.6525s10d −0.026 −0.025 0.474 0.475 0.641 0.643

1.2 0.7429s5d −0.002 −0.002 0.498 0.498 0.665 0.665

1.3 0.8365s3d 0.022 0.022 0.522 0.521 0.688 0.688

1.4 0.9374s1d 0.047 0.048 0.547 0.546 0.713 0.715

1.5 1.0490s1d 0.075 0.076 0.575 0.576 0.742 0.75

1.6 1.1769s7d 0.107 0.11 0.607 0.62 0.774 0.80

1.7 1.333s2d 0.148 0.15 0.648 0.68 0.815 0.90

1.8 1.541s5d 0.202 0.20 0.702 0.7 0.869 0.9

1.9 1.861s8d 0.29 0.3 0.79 0.8 0.95 1.0

wX
c 2 5

16
13
16

47
48

FIG. 7. Thermal scaling dimensionxT versus bending rigidity
wX in the Flory model(symbols), as compared to the exact result of
the six-vertex model(line).
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B. Generalized eight-vertex model

It is also of interest to consider the loop generalization of
the eight-vertex model. In terms of the loops there are two
different ways of resolving the vertices that act as sources or
sinks of the eight-vertex arrows, and so we are led to con-
sider the ten-vertex model defined by Fig. 9. In addition to
the local weights which are shown on the figure, we assign
the usual nonlocal loop weightsnb andng.

For simplicity, we shall disregard the effects of aniso-
tropy, and thus only two types of local weights are of inter-
est. The first is the weightwX of having the two loop flavors
cross, same as in the SFL model. The second is a contact
interactionwc, assigned to the vertices where two loop seg-
ments of the same flavor touch one another. One may con-
sider letting it depend on the flavor index, but in order to stay
close to the definition of the conventional eight-vertex model
we shall here take the contact interaction to be flavor inde-
pendent.

The motivation for the contact interaction is to be able to
exclude the loops of a given flavor from any number of lat-
tice vertices. As this violates the compactness constraint, we
expect the conclusions of our earlier paper on the transition
from the compact to the dense phase[30] to apply. A nonzero
value ofwc should induce a flow towards a phase where the
two loop flavors decouple, and the critical properties are just
those of two noninteractingOsnd models(with n=nb andng

respectively) in the low-temperature(dense) phase.
A detailed numerical study of the behavior of the effective

central charge in the parameter spaceswX ,wcd has led us to
suggest that the phase diagram of the generalized eight-
vertex model is as shown on Fig. 10.

For wc=0, the model reduces to the SFL model, and so
below the melting pointM (i.e., for wX ,wX

c with, very
roughly, wX

c <2) we have a line of critical points along
which critical exponents that depend on the second height
component vary continuously, while the central charge

csnb,ngd = 3 −
6eb

2

1 − eb
−

6eg
2

1 − eg
s31d

is constant. The end point of the SFL line, withwX =`, is a
trivial attractive fixed pointT, favoring configurations in
which all loops go straight in the bulk(they are necessarily
reflected at the boundaries enjoying free boundary condi-
tions). The pointT is believed to govern the theories to the
right of M (i.e., with wX .wX

c ), including a portion of the
phase diagram with nonzero but smallwc (see Fig. 10).

Moving away from the critical line of the SFL model,
towards positive values of the contact interaction, we ob-
serve numerically that the central charge drops abruptly by
one unit, and stays constant as a function ofwc up to some
finite critical valuewc

c that depends onwX. This is the dense
phase of the DPL2 model [30] with central charge

csnb,ngd = S1 −
6eb

2

1 − eb
D + S1 −

6eg
2

1 − eg
D . s32d

Here, the two loop-flavors decouple, and critical exponents
are just the sum of the critical exponents for two noninter-
actingOsnd models(with n=nb andng) in the dense phase.
We have verified numerically this prediction for the exponent
x1,1 for a number of different loop fugacities. We have also
observed numerically that the critical exponents do not de-
pend onwX throughout the dense phase. This confirms the
expectations that in noncompact phases the only effect of the
bending rigidity is to renormalize the persistence length of
the polymer, as already discussed in the Introduction.

Finally, for wc large enough, the numerically evaluated
central charges suggest that the models flow into an attrac-
tive fixed point P situated atswX ,wcd=s0,`d. Here, only
contact-type vertices are allowed, and since the different
loop flavors can no longer coexist, the partition function atP
becomes simply a sum,Z=Zb+Zg, whereZk involves only
contact vertices of flavork (with k=b,g). But clearlyZk is
just the loop-model representation[10] of a self-dual Potts

FIG. 8. Anisotropy effects in the generalized six-vertex model
with snb,ngd=s0,1d. The symbols show the effective central charge
for various system sizes. For comparison, the dashed line shows the
function −sinsptd, which would have been the exact result if the
anisotropy had the same effect as in the six-vertex model.

FIG. 9. Vertices defining the generalized eight-vertex model,
along with their corresponding multiplicities and local weights.

FIG. 10. Proposed phase diagram of the generalized eight-vertex
model.
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model withqk=snkd2 states. It is intuitively clear(and explic-
itly brought out by the exact solution[10]) that the free en-
ergy of theq-state Potts model is an increasing function ofq.
Therefore, the sumZ=Zb+Zg will be dominated by the term
with the largest value ofq. Thus, the pointP has central
charge

csnb,ngd = maxS1 −
6eb

2

1 − eb
,1 −

6eg
2

1 − eg
D , s33d

and, by the usual identification of the critical Potts model
with the dense phase of theOsn=Îqd model, the critical
exponents are simply those of a singleOfmax snb,ngdg
model in the dense phase.

We would expect that only this large-wc portion of the
phase diagram gets modified by letting the contact interac-
tion be flavor dependent. Let us recall that in the conven-
tional Osnd model[2] with a finitepositivevacancy fugacity
wc the critical behavior of the loops is described by either of
two critical branches. The first branch, known as thedense
branch [2,31], is attractive inwc and as such controls the
entire domain of lowwc. Its central charge is the one referred
to above:

c = 1 − 6ẽ2/s1 − ẽd s34d

in the usual parametrizationn=2 cosspẽd. The second
branch, known as thedilute branch[2,32], is repulsive inwc
and as such requireswc to be tuned to a particular
n-dependent critical value. In other words, the fugacity of a
vacancy can tune theOsnd model to its critical point. The
central charge of the dilute phase is

c = 1 − 6ẽ2/s1 + ẽd, s35d

using the same parametrization as above.
In particular, in the DPL2 model[30] the two loop-flavors

act as decoupledOsnd models, and depending on the fugaci-
ties of the two flavors of vacancies each of the models can
reside in either the dense or the dilute phase, giving a total of
four different phases. We expect this conclusion to hold true
in the generalized eight-vertex model(i.e., with an added
bending rigidity wX). Note that only whennb=ng can we
simultaneously take the twoOsnd models to their critical
point by tuning a vacancy fugacitywc which is common for
the two loop-flavors. In the general case, whennbÞng we
would need two distinct parameters,wc,b and wc,g, as indi-
cated on Fig. 9. Presumably, this would lead to a richer phase
diagram, with critical lines corresponding to dense-dilute,
dilute-dense, and dilute-dilute behavior of the twoOsnd mod-
els.

Let us return to the phase diagram shown in Fig. 10. In
the special case of the eight-vertex model, the two oblique
transition lines shown on Fig. 10 are known to be of slope
1/2 [10]. Actually, they are just images of the line OM under
certain exact symmetries of the eight-vertex model[10].
Thus, they have againc=1, whereas the “bulk” of the phase
diagram is noncritical.

These two features can be accounted for within the frame-
work of the generalized eight-vertex model withsnb,ngd
=s1,1d. First, note that our field theory predicts that the re-
gion on Fig. 10 which is limited by the two oblique lines and
the coordinate axes is actuallycritical with central charge
c=0 (dense phase); this is obtained by settingeb=eg=1/3 in
Eq. (32). This is not in contradiction with the exact result
[10] that this same region is noncritical within the eight-
vertex model. Namely, the generalized eight-vertex model is
embedded in a much larger Hilbert space. More precisely,
our statement is that the first and third height components
possess critical fluctuations and constitute ac=0 theory, even
though the second height component is massive. This sce-
nario is brought out very clearly by the numerics, as we
observe the leading transfer matrix eigenvalues in the sectors
determining the free energy andxT to coincide within the
concerned region. Thus,xT andK22 vanish identically, cf. Eq.
(26).

Second, the field theory also accounts for the fact that,
within the 8V model, the two oblique lines are critical with
c=1. Namely, we claim that they simply correspond to
dilute-phase behavior within the generalized 8V model.
More precisely, sincenb=ng, the two decoupledOsnd models
must be driven to their critical points simultaneously by tun-
ing the common parameterwc,b=wc,g;wc. Settingẽ=1/3 in
Eq. (35) gives a contribution ofc=1/2 for each of the mod-
els, whencectotal=1/2+1/2=1 asexpected.

Finally, in the 8V model, the part of thewc axis with
0,wc,1 constitutes a further image of the line OM under
an exact symmetry. We believe this to be “accidental” in the
sense that we have seen no sign of a finite interval of thewc
being critical within the generalized 8V model with other
values of the fugacities.

Taking a common contact parameterwc,b=wc,g for the
generalized 8V model withnbÞng destroys the criticality of
the two oblique lines of Fig. 10. They still act as transition
lines in the sense that they separate the basins of attraction of
the dense phase and the pointsP andT, respectively. How-
ever, the transition is now expected to be a first-order one.
This is confirmed by our numerical results for thesnb,ngd
=s0,1d case which show that the effective central charge
develops violent finite-size effects upon approach of the tran-
sition lines. Further support for this scenario is furnished by
Monte Carlo simulations[12] where a finite concentration of
empty sites was shown to lead to a first-order transition.

The oblique lines in Fig. 10 are expected to move away
from their exactly known 8V positions when we vary the
loop fugacities away from the trivial valuessnb=ng=1d.
Some evidence for this is already available from our deter-
mination of the melting pointM in the Flory case; see Eq.
(27). In general, we have been able to numerically determine
the position of the uppermost line from the transfer matrix
spectra. Recall from the discussion near Eq.(26) that the
coupling K22 can be linked to the gap between the leading
eigenvalues in two topologically characterized transfer ma-
trix sectors. By scanning throughwc at fixed wX we have
observed(at least in the Flory case) that these two eigenval-
ues become degenerate as soon aswc moves away from zero
(even at a value as small aswc.10−6). This degeneracy
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eventually disappears when there is a level crossing in the
ground-state sector of the transfer matrix, at some finitewc.

We have measured the position of this level crossing as a
function of system size and extrapolated it to the thermody-
namic limit. To test the reliability of the method, we have
first applied it to thesnb,ngd=s1,1d case. Our final estimate
wc=1.52±0.02 at fixedwX =1 is in good agreement with the
exact resultwc=3/2 [10]. The same method applied to the
Flory case, snb,ngd=s0,1d, yields wc=1.4294±0.0005 at
wX =1 and wc=1.958±0.005 atwX =2. These values are
clearly different from those predicted by the 8V model.

In conclusion, we believe that it would be most interesting
to study the generalized eight-vertex model in more detail,
using the exact techniques of integrable systems. In particu-
lar, it is conceivable that the present treatment misses some
subtle exceptional points in the phase diagram.

VII. DISCUSSION

The semiflexible loop model was defined as a generaliza-
tion of the two-flavor fully packed loop model on the square
lattice, by introducing a vertex weight associated with verti-
ces at which the loop does not undergo a 90° turn. We have
proposed an effective field theory of the semiflexible loop
model based on its height representation. This leads to exact
results for the Flory model of polymer melting in two dimen-
sions. Furthermore, we have shown that the loop model pro-
vides a generalization of the eight-vertex model with an in-
teresting phase diagram. Here we comment further on these
two main results.

A. Scaling of semiflexible compact polymers

Polymers configurations are random, and as such, they are
described by probability distributions. Their critical nature,
in the long-chain limit, is revealed by the fact that these
distributions have scaling forms characterized by universal
exponents. The simplest distribution is the probabilitypsr , ld
that the end-to-end distance equalsr for a polymer of con-
tour length l. In the scaling limit, whenr is much greater
than the lattice spacing and much less than the radius of
gyration of the polymer, we have[1]

psr,ld = rufsr/lnd. s36d

Here f is a scaling function,n is the “swelling exponent,”
andu the “cyclization exponent.”

For semiflexible compact polymers, which correspond to
the Flory model withwX øwX

c , the swelling exponent isn
=1/2.This is an exact result which simply follows from the
fact that compact polymers are space filling, regardless of
wX. Furthermore, the swelling exponent can be related to the
string dimensionx2,0 through the scaling lawn=s2−x2,0d−1

[16]. Then replacingeb=1/2 andeg=1/3 in Eq.(21) gives
x2,0=0 andn=1/2, for allvalues ofwX. This calculation then
serves as a nontrivial check on the field theory.

The cyclization exponent is related to the scaling dimen-
sion associated with one real and one ghost loop segment:
u=−2x1,1 [17]. From Eq. (23) it follows that u will vary
continuously as the polymer is made stiffer by increasingwX.

At the melting transition the exact result foru follows from
the computed value of the critical elastic constant, Eq.(15),

uc = − 5
8 . s37d

The negative value implies that at the transition(and slightly
below it) the two ends of the polymer feel an effectiveat-
traction. This is surprising as the naive expectation is that the
two ends of a polymer will feel an effective repulsion due to
the self-avoiding constraint. For stiff compact polymers this
naive expectation is not met. Whether this will persist in
three dimensions is an interesting open question.

B. Generalized eight-vertex model

The generalized 8V model gives a quite detailed model-
ization of two-dimensional lattice polymers. It possesses the
following features.

(a) Steric constraints(self-avoidance and connected-
ness of the polymer chains) are modeled exactly.

(b) Possibility of introducing polydispersity, by taking
nb away from zero.

(c) A bending rigidity parameterwX allows to control
the transition between a melt and a crystalline phase.

(d) A contact interaction parameterwc (or alterna-
tively, a fugacity of a vacancy) controls the transitions be-
tween compact, dense, dilute, Potts-like, and noncritical
phases.

(e) Possibility of introducing nonlocal interactions(al-
though of a peculiar form), by takingng away from one.

The phase diagram of a somewhat similar model was
studied in the Bethe approximation by Lise, Maritan, and
Pelizzola[33]. However, in the compact limit the results of
these authors are equivalent to Flory’s mean-field treatment,
as they do not take into account the nonlocal features of the
polymers. We have here treated the excluded-volume effects
in an exact manner. On the other hand, the model of Ref.
[33] includes an additional feature.

(f) A contact interaction between nonconsecutive
monomers that are nearest neighbors on the lattice allows to
drive the model to tricriticality, i.e., to access theu-point
physics.

This interaction is not present in the generalized 8V
model. If we were to include it, we would need the contact
interaction to be flavor dependent(the authors of Ref.[33]
do not consider what we refer to as ghost loops). However,
we do not believe that anything new can be learnt from such
a generalization. First, the contact interaction is redundant in
the compact phaseswc=0d, as the number of contacts is con-
stant (actually maximal) in any fully packed configuration.
Second, in the noncompact phasesswcÞ0d our field theory
predicts a decoupling into two independentOsnd models.
One would expect the flavor-dependent contact interactions
to act independently on the two decoupled models, and the
problem essentially reduces to that of theu-point physics of
a standardOsnd model [34].

We leave it as an interesting question whether the gener-
alized 8V model can be tackled using the methods of inte-
grable systems. From Fig. 9 it can obviously be formulated
as a 40-vertex model(taking into account the loop orienta-
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tions) with complex vertex weights. To our knowledge, such
a model has not been studied previously. If one could solve
it, it would be particularly interesting to work out the exact
expression of the coupling constantK22swXd as a function of
the loop fugacitiesnb andng. Also, it is conceivable that our
field theoretical approach has missed some exceptional criti-
cal points in the phase diagram.

C. Order of the melting transition

In this paper we have established that the order of the
melting transition within the Flory model is second order, as
first suggested by Saleur[13]. We have also explained how
the introduction of a finite density of vacancies may lead to a
first-order transition, as observed in Monte Carlo simulations
[12]. This combined scenario settles a long controversy in
the literature[8].
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APPENDIX: CONSTRUCTION OF THE
TRANSFER MATRICES

The transfer matrix construction of Ref.[17] relied on an
explicit bijection between the set of allowed connectivity
statesC and the set of integersZuCu=h1,2,3, . . . ,uCuj. How-
ever, in many cases it is difficult to furnish ana priori char-
acterization of the set of allowed basis states and its cardi-
nality. Moreover, some of the states utilized in Ref.[17] were
found to carry zero weight in the leading eigenvectors of the
corresponding sectors of the transfer matrix, and so one
should think that it would be possible to eliminate them from
the outset.

To remedy this situation it is preferable to use another
approach. Without prior knowledge of the state space, the
latter is explicitly generated by acting with the transfer ma-
trix T on a reference stateuv0l which is known to belong to
the image ofT in the concerned sector. In this way, a certain
number of image states is generated, which can be inserted in
an appropriate data structure using hashing techniques[35].
One then acts withT on these states, generating a new list of
states, and continues in this way until no new states are gen-
erated. The resulting list is the complete state space ofT in
the concerned sector.

It remains to find an appropriate reference stateuv0l for
each physically interesting sector ofT. For the sectorssb,sgd
in which sk flavor-k strings sk=b,gd span the length of the
cylinder generated upon action ofT, the reference state can
be chosen as shown in Fig. 11. This state simply consists of
sL−sb−sgd /2 real arches followed bysb real strings andsg

ghost strings.L must of course have the same parity assb
+sg.

Choosing the sector corresponding to the thermal scaling
dimension is a little less obvious. A useful observation is
made by exploiting the correspondence with states of the
six-vertex model, as depicted in Fig. 3. In a given row, let
Nk

even and Nk
odd be the number of flavor-k loop segments re-

siding on even and odd vertical edges, respectively. Then
define

Q = sNb
even− Nb

oddd − sNg
even− Ng

oddd. sA1d

By inspection of Fig. 3 it is seen thatQ is nothing but the
vertical flux of arrows within a given row. By the ice rule,Q
is a conserved quantity and can thus be used to label a sector
of T.

The reference state of Fig. 11 withssb,sgd=s0,0d is seen
to haveQ=0. The first excited state with no strings hasQ
= ±4 and is depicted in Fig. 12. Its first four sites are occu-
pied by mutually penetrating real and ghost arches, followed
by sL−4d /2 simple real arches. In general, for any givenL,
states withQ= ±4q exist for q=0,1, . . . ,bL /4c. The number
of states in thekth sector is just

o
n=q

L/2−q S L/2

n + q
DS L/2

n − q
DCL/2−nCn, sA2d

whereCn=s2nd ! / n! sn+1d! are the Catalan numbers. Using
a sum rule on the binomial coefficients, it is easily seen that
the total number of states without strings, summed over the
sector indexq, reads simply

o
n=0

L/2 S L

2n
DCL/2−nCn. sA3d

This is nothing but the dimension of the state space used in
Ref. [17].

From entropic reasons it is fairly obvious that the free
energy belongs to the sectorq=0. We are now going to argue
that the thermal scaling exponent is linked to the gap be-
tween the first eigenvalue in theq=0 andq=1 sectors, cf.
Eq. (25). The first reason is that, by construction, theq=1
constraint acts as an excitation within the full state space
[with all values ofq included, as in Eq.(A3)], and hence
should correspond to a subdominant eigenvalue within that
space. Indeed, it is observed numerically that the second ei-
genvalue obtained from the transfer matrix of Ref.[17] co-

FIG. 11. Reference state used for generating the sector withsk

flavor-k stringssk=b,gd.

FIG. 12. Reference state used for generating the thermal
sector.
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incides with the leading eigenvalue of theq=1 sector, ob-
tained by using the techniques outlined above.

As a second argument, note that in the language of the
SFL model height mapping, encircling the first four sites of
Fig. 12 yields a height dislocation ofA −C+B−D. By the
four-coloring rule,A +B+C+D=0, this is the same as

mT = 2sA + Bd = − 2sC + Dd. sA4d

But the latter isalso the height defect associated with a de-
fect vertex sC ,D ,C ,Dd that corresponds to excluding the
real loops from that vertex, which is exactly a thermal-type
excitation(and to wit the one that is used for computing the
critical exponentxT within the field theory).

In the field theory, one might compute the exponent cor-
responding to the insertion of magnetic defects ±q8mT at
either end of the cylinder. In the transfer matrix, these should
simply be linked to the gap between the sectorsq=0 andq
=q8.

In Table II we show the sizes of the various transfer ma-
trices used in this work. The columns labeleds0,0d and
“Thermal” correspond to the expressions(A2) with q=0 and
q=1, respectively. For the other columns, similar expressions
may be worked out along the lines of Ref.[17].

Finally, let us remark that the computations for the gen-
eralized eight-vertex model introduced in Sec. VI B are pro-
duced from the same reference states, but slightly generaliz-
ing the transfer matrix to accommodate the contact-type
vertices shown on Fig. 9.
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